
Verified Vectorized Cryptography
(with less manual effort)

Karthikeyan Bhargavan

+
B. Beurdouche, M. Polubelova, N. Kulatova

J. Protzenko, S. Zanella-Béguelin

Towards High-Assurance Crypto Software
Crypto code is easy to get wrong and hard to test well
• memory safety bugs [CVE-2018-0739, CVE-2017-3730]
• side-channel leaks [CVE-2018-5407, CVE-2018-0737]
• arithmetic bugs [CVE-2017-3732, CVE-2017-3736]

Formal verification can systematically prevent bugs
• Many tools: F*, Cryptol/Saw, VST, Fiat-Crypto, Vale, Jasmin
• But verification often requires (PhD-burning) manual effort

How do we scale verification up to full crypto libraries?
• Low-level platform specific optimizations for a suite of algorithms

2

Writing Verified Crypto Code

3

CRYPTO STANDARD
(IETF/NIST)

ALGORITHM
PSEUDOCODE

Writing Verified Crypto Code

4

CRYPTO STANDARD
(IETF/NIST)

ALGORITHM
PSEUDOCODE

Writing Verified Crypto Code

5

CRYPTO STANDARD
(IETF/NIST)

ALGORITHM
PSEUDOCODE

IMPLEMENTATION
(C, 200 loc)

Adds many details
• Memory allocation
• Incremental API

Writing Verified Crypto Code

6

CRYPTO STANDARD
(IETF/NIST)

ALGORITHM
PSEUDOCODE

IMPLEMENTATION
(C, 200 loc)

Adds many details
• Memory allocation
• Incremental API

Obviously correct?
unless we introduced
a buffer overflow,
or a timing leak

Writing Verified Crypto Code

7

CRYPTO STANDARD
(IETF/NIST)

ALGORITHM
PSEUDOCODE

IMPLEMENTATION
(C, 500 loc)

Modular Field Arithmetic
a += n

a = (r*a) % (2130 – 5)

Writing Verified Crypto Code

8

CRYPTO STANDARD
(IETF/NIST)

ALGORITHM
PSEUDOCODE

IMPLEMENTATION
(C, 500 loc)

Optimized 32-bit Code
a lot more code, with possible
carry propagation bugs, or
buffer overflows, or
timing leaks.

Writing Verified Crypto Code
CRYPTO STANDARD

(IETF/NIST)

ALGORITHM
PSEUDOCODE

IMPLEMENTATION
(C, 500 loc)

FORMAL SPEC
(F*/CRYPTOL/Coq)

VERIFY
Verification Guarantees
1. Functional Correctness
2. Memory Safety
3. Secret Independence

(constant-time)BUG

☑

HACL*: a verified C crypto library
[Zinzindohoé et al. ACM CCS 2017]

A growing library of verified crypto algorithms
• Curve25519, Ed25519, Chacha20, Poly1305, SHA-2, HMAC, …

Implemented and verified in F* and compiled to C
• Memory safety proved in the C memory model
• Secret independence (“constant-time”) enforced by typing
• Functional correctness against a mathematical spec written in F*

Generates readable, portable, standalone C code
• Performance comparable to hand-written C crypto libraries
• Used in Mozilla Firefox, WireGuard VPN, Tezos Blockchain, …

https://github.com/project-everest/hacl-star
10

HACL*: estimating verification effort

CHACHA20 POLY1305

11

High-level F* Spec 70 lines

Verified F* Code 691 lines

Generated C Code 285 lines

Proof Annotations 406 lines

High-level F* Spec 45 lines

Verified F* Code 3967 lines

Generated C Code 451 lines

Proof Annotations 3516 lines

Every line of verified C requires 2x-7x lines of proof
Complex mathemaPcal reasoning interleaved with many boring steps

Many Platform-Specific Implementations
CRYPTO STANDARD

(IETF/NIST)

ALGORITHM
PSEUDOCODE

PORTABLE 32-BIT
(C, 500 loc)

HIGH-LEVEL SPEC
(F*/CRYPTOL/Coq)

64-BIT
(C, 200 loc)

INTEL AVX
(ASM, 1 Kloc)

INTEL AVX2
(ASM, 1 Kloc)

ARM NEON
(ASM, 1 Kloc)

Large code-base for each algorithm
• Independently evolving implementations
• Different algorithmic optimizations
• Hard to tell which version will be used
• A hard target for formal verification

(probably also awful for maintenance)

Many Platform-Specific Implementations
CRYPTO STANDARD

(IETF/NIST)

ALGORITHM
PSEUDOCODE

PORTABLE 32-BIT
(C, 500 loc)

HIGH-LEVEL SPEC
(F*/CRYPTOL/Coq)

64-BIT
(C, 200 loc)

INTEL AVX
(ASM, 1 Kloc)

INTEL AVX2
(ASM, 1 Kloc)

ARM NEON
(ASM, 1 Kloc)

Idea: Write & verify generic SIMD code
• Compiles to platform-specific code
• A single target for formal verification
• A basepoint for further optimization

CRYPTO ALGORITHM
(hacspec)

COMPILE

FORMAL SPEC
(F*)

GENERIC VECTORIZED ALGO
(F*)

STATEFUL VECTORIZED CODE
(F*)

VERIFY
(F*)

VERIFY
(F*)

SIMD LIBRARY
(F*)

≈ ≈

COMPILE

SCALAR CODE
(PORTABLE 32-BIT C)

VECTORIZED CODE
(C + 128/256/512-BIT
VECTOR INTRINSICS)

VECTORIZED CODE
(C + 128/256/512-BIT
VECTOR INTRINSICS)

VECTORIZED CODE
(C + INTRINSICS)

PROVE
Functional Correctness of

Generic Vectorized Algorithm

PROVE
Functional Correctness,

Memory Safety,
Secret Independence of
Low-level Stateful Code

Supports
128/256/512-bit
SIMD platforms

RFC-based
pseudocode Verifica>on Architecture

Main Manual Effort

F*: a verification oriented language

• Functional programming language (« à la Ocaml »)
• Customizable verification system (« à la Coq »)
• Proof automation via SMT solvers (Z3)
• Compilers to Ocaml, F#, C, WebAssembly

http://fstar-lang.org

Actively developed at Microsoft Research and Inria

http://fstar-lang.org/

hacspec: towards verifiable crypto standards
[Bhargavan et al. SSR 2018]

A domain-specific language for writing
executable, checkable, formal crypto specs
• Syntactically, a typed subset of Python3
• Looks like the pseudocode used in RFCs

Can be compiled to multiple formal languages
• Currently: F* & EasyCrypt. Next: Cryptol & Coq
• Allows comparison/composition of different proofs

Add your own spec:
https://github.com/HACS-workshop/hacspec/

16

CRYPTO ALGORITHM
(hacspec)

COMPILE

FORMAL SPEC
(F*)

Example: CHACHA20 in hacspec

17

CRYPTO ALGORITHM
(hacspec)

COMPILE

FORMAL SPEC
(F*)

Type Abbreviations

Variable DeclaraCons

Only pure functions:
no external side-effects

Code runs in standard python3
with runtime typechecking

Compiled F* spec for CHACHA20

18

CRYPTO ALGORITHM
(hacspec)

COMPILE

FORMAL SPEC
(F*)

Compiled specifica>on in F* syntax
Types, array bounds, termina>on sta>cally verified

Vectorization Strategies for CHACHA20

1. Line-level Parallelism
reorder computations to
compute 4 lines in parallel

Vectorization Strategies for CHACHA20

1. Line-level Parallelism
reorder computations to
compute 4 lines in parallel

2. Counter-mode Parallelism
process any number of
blocks in parallel

We implemented both,
but 2 is faster and more generic

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

A Generic Vectorized Algorithm

SCALAR SPECVECTORIZED SPEC

SUPPORTED VECTOR SIZES

A Generic Vectorized Algorithm

SCALAR SPECVECTORIZED SPEC

VECTOR OF w UINT32s

A Generic Vectorized Algorithm

SCALAR SPECVECTORIZED SPEC

CONTAINS w CHACHA20 STATES

A Generic Vectorized Algorithm

SCALAR SPECVECTORIZED SPEC

SIMD OP: APPLY TO EACH VECTOR ELEMENT

A Generic Vectorized Algorithm

1. Define SIMD versions of all core functions
(relying on generic SIMD operations)

2. Define functions to load and store vectorized state
(using a generic matrix transposition library)

3. Modify Counter-Mode Encryption to process w blocks at once

FORMAL SPEC
(F*)

GENERIC VECTORIZED ALGO
(F*)

STATEFUL VECTORIZED CODE
(F*)

SIMD LIBRARY
(F*)

≈ ≈

Verifying the Vectorized Algorithm

1. Prove lemmas showing that each vectorized function
maps over the corresponding scalar function

2. Prove lemmas showing that that the main API
functions have the same input-output behavior

SCALAR SPEC
(F*)

GENERIC VECTORIZED ALGO
(F*)≈

Verifying the Vectorized Algorithm

1. Prove lemmas showing that each vectorized function
maps over the corresponding scalar function

2. Prove lemmas showing that that the main API
functions have the same input-output behavior

SCALAR SPEC
(F*)

GENERIC VECTORIZED ALGO
(F*)≈

Verifying the Vectorized Algorithm

1. Prove lemmas showing that each vectorized function
maps over the corresponding scalar function

2. Prove lemmas showing that that the main API
functions have the same input-output behavior

SCALAR SPEC
(F*)

GENERIC VECTORIZED ALGO
(F*)≈

From Algorithm to Vectorized Code

From Algorithm to Vectorized Code

GENERIC VECTORIZED SPEC
(F*)

STATEFUL VECTORIZED CODE
(F*)

SIMD LIBRARY
(F*)

≈

MEMORY SAFETY PRECONDITION

MEMORY SAFETY POSTCONDITION

From Algorithm to Vectorized Code

GENERIC VECTORIZED SPEC
(F*)

STATEFUL VECTORIZED CODE
(F*)

SIMD LIBRARY
(F*)

≈
FUNCTIONAL CORRECTNESS GOAL

F* VERIFIES THAT GENERIC STATEFUL CODE MEETS ITS SPEC

Generating C Code for Different Platforms

w = 1: 32-BIT SCALAR CODE IN PORTABLE C

w = 8: 256-BIT VECTORIZED CODE
USING AVX2 INTRINSICS

w = 4: 128-BIT VECTORIZED CODE
USING AVX/NEON INTRINSICS

Genera&ng C Code for Different Pla3orms

w = 1: 32-BIT SCALAR CODE IN PORTABLE C

w = 8: 256-BIT VECTORIZED CODE
USING AVX2 INTRINSICS

CRYPTO ALGORITHM
(hacspec)

COMPILE

FORMAL SPEC
(F*)

GENERIC VECTORIZED ALGO
(F*)

STATEFUL VECTORIZED CODE
(F*)

VERIFY
(F*)

VERIFY
(F*)

SIMD LIBRARY
(F*)

≈ ≈

COMPILE

SCALAR CODE
(PORTABLE 32-BIT C)

VECTORIZED CODE
(C + 128/256/512-BIT
VECTOR INTRINSICS)

VECTORIZED CODE
(C + 128/256/512-BIT
VECTOR INTRINSICS)

VECTORIZED CODE
(C + INTRINSICS)

PROVE
Functional Correctness of

Generic Vectorized Algorithm

PROVE
Functional Correctness,

Memory Safety,
Secret Independence of
Low-level Stateful Code

Supports
128/256/512-bit
SIMD platforms

RFC-based
pseudocode Verification Architecture

Main Manual Effort

Verifying Vectorized POLY1305

1. Verify vectorized field arithmetic
Each function calculates w field operations in parallel

2. Exploit inherent parallelism in polynomial evaluation
Transform the poly1305 loop using Horner’s rule (1x/2x/4x)

3. Prove that the vectorized MAC returns the correct value

SCALAR SPEC
(F*)

GENERIC VECTORIZED SPEC
(F*)≈

HACL* Vectorization Performance

CHACHA20 POLY1305

36

32-bit Scalar 4 cy/b

128-bit Vectorized

(AVX)

1.5 cy/b

256-bit Vectorized

(AVX2)

0.79 cy/b

Fastest Assembly

(OpenSSL AVX2)

0.75 cy/b

32-bit Scalar 1.5 cy/b

128-bit Vectorized

(AVX)

0.75 cy/b

256-bit Vectorized

(AVX2)

0.39 cy/b

Fastest Assembly

(OpenSSL AVX2)

0.34 cy/b

Measurements with gcc-7 on Intel i7-7560 (Skylake) running Ubuntu 18.10

Estimating Verification Effort
CHACHA20 POLY1305

37

hacspec 150 lines

Vectorized algorithm 500 lines

Correctness proofs 700 lines
Vectorized code 500 lines
Total Proof Effort 1700 lines
Generated C code 3700 lines

hacspec 80 lines

Vectorized algorithm 450 lines
Correctness proofs 2000 lines
Vectorized code 1500 lines
Total Proof Effort 4000 lines
Generated C code 16000 lines

Effort roughly the same as verifying 1 scalar implementation

Ongoing Work
We are systema0cally applying our new approach to
write generic vectorized code for most of HACL*

Verified crypto feeds into larger verifica0on projects
• New verified construc0ons:
• New verified protocols:
• New target plaEorms:

38

ERC CIRCUS [2016-21]

Building Verified Cryptographic
Web Applications

Project Everest [2016-20]

Building a Verified HTTPS Stack

Concluding Thoughts
Building high-assurance crypto is a collaborative process
• Verification research has made advances, but we need help

If you are a cryptographer:
try writing formal specs for your fancy new primitive
• Use hacspec, or Cryptol, or Coq, or F*, or …

If you are a crypto developer:
consider writing generic optimized algorithms
• Don’t just dump more unverified assembly into the library

Questions?

• HACL*: https://github.com/project-everest/hacl-star
• hacspec: https://github.com/HACS-workshop/hacspec
• F*: https://www.fstar-lang.org

• INRIA PROSECCO: http://prosecco.inria.fr
• Microsoft Project Everest: https://project-everest.github.io/

https://github.com/project-everest/hacl-star
https://github.com/HACS-workshop/hacspec
https://www.fstar-lang.org/
http://prosecco.inria.fr/
https://project-everest.github.io/

