
Messaging
Layer Security
The Beginning
Richard Barnes, Benjamin Beurdouche, Karthik Bhargavan,
Katriel Cohn-Gordon, Cas Cremers, Jon Millican,
Emad Omara, Eric Rescorla, Raphael Robert

RWC 2019, San Jose, CA

YOUR NAME / LOGO HERE

Objectives

Context
Lots of secure messaging apps

Some use similar protocols…

… some are quite different

… but all have similar challenges

Wildly different levels of analysis

Everyone maintaining their own libraries

Top-Level Goals
Detailed specifications for an async group messaging security protocol

Async - No two participants online at the same time
Group - Support large, dynamic groups
Messaging security - Modern security properties (FS / PCS)

Code that is reusable in multiple contexts...

… and interoperable between different implementations

Robust, open security analysis and involvement from the academic community

Architecture

Delivery
Service

Authentication
Service

Client 1 Client 2 Client N...

User 0 User M

Group

Scope (with analogy to TLS)

Transport
(TCP / UDP)

Message Content
(HTTP, SMTP, SIP, …)

Security Protocol
(TLS / DTLS)

Authentication
(PKI)

Certificate[Verify]

XSS, Phishing

Confidentiality w.r.t
Delivery Service

Traffic analysis

MLS vs. TLS
Lots of actors - 2 vs. 10N

Long lived sessions - seconds vs. months

Lots of mobile devices involved

Significant probability that some member is compromised
at some time in the life of the session

Endpoint
Compromise

Time

Forward Security* Post-Compromise Security*

FS / PCS Interval

* … with regard to a participant

Prior Art
mpOTR, (n+1)sec No PCS

S/MIME, OpenPGP Linear scaling, difficult to achieve PCS

Client fanout Linear scaling, but good async / PCS properties
Signal, Proteus, iMessage, et al.

Sender Keys Linear scaling, PCS possible but very expensive
WhatsApp, FB, OMEMO, Olm, et al.

Goal: FS/PCS with sub-linear scaling as much as possible

Create Add Update Remove Message

N^2 10,000,000

N 10,000

log N 14

1 1

Client Fanout Sender Keys MLS-02

History

...

Once upon an RWC...
RWC 2015
Millican and Barnes introduced

2016…
Barnes and Rescorla pondering specifications for messaging security
Millican, Cremers, Cohn-Gordon, et al. looking into tree-based schemes

RWC 2017
Hallway track conversations -- “Would a spec be useful?”

July 2017
https://eprint.iacr.org/2017/666.pdf

RWC 2015

...

Things Start to Come Together

RWC 2017 RWC 2018 RWC 2019

September 2017
MLS Workshop #1

November 2017
MLS Workshop #2

May 2018
IETF MLS WG officially formed

March 2018
IETF MLS BoF

January 2018
MLS Workshop #3

RWC 2015

...

And Now, the Actual Work

RWC 2017 RWC 2018 RWC 2019

July 2018
MLS WG @ IETF 102

September 2018
MLS WG interim

November 2018
MLS WG @ IETF 103

January 2019
MLS WG interim

Protocol

Tree

Epoch
Secret

Application
Secret

Protocol
Messages

Photo Credit: Nathan Jones @ flickr

https://www.flickr.com/photos/pwinker/2756234981/in/photolist-54KFa7-GceYiH-5cyqCM-mL1wLE-csVyhu-csVsJq-csVp9W-csVZeE-we1VvY-uPVJQQ-cF5Aqd-gNkeWB-iW23S7-7NzbeP-FPBy6e-ZjvRzz-KJQ1vC-K4QQbf-4YVAzh-82C35u-6XCGJJ-mzq1Q

Trees of Keys
KE state of the group comprises a
left-balanced binary tree of DH key pairs

Each member of the group occupies a leaf

Tree invariant: The private key for an
intermediate node is known to a member iff
the node is an ancestor of the member’s leaf

B C D E FA

G H I

J

K

C has private keys for H, J, K

Trees of Keys
This has a couple of nice consequences:

Intermediate nodes represent
subgroups you can DH with / encrypt to

Root private key is a secret shared by
the members of the group at a given
time

Protocol maintains this state through group
operations (Create, Add, Update, Remove)

B C D E FA

G H I

J

K

C has private keys for H, J, K

1st Try: Asynchronous Ratchet Trees (ART)

The key pair at an intermediate node is
derived from a DH operation between its
children

This enables log-depth Update:

Change the private key for a leaf

Re-derive the nodes up the tree

Add and Remove involve “double-join”:
A leaf private key held by two members

e = gab f = gcd

h = gef

a b c d

Cohn-Gordon, et al. ACM CCS 2017 https://eprint.iacr.org/2017/666.pdf

2nd Try: TreeKEM
Instead of doing DH to set intermediate
nodes, when you change a leaf:

Derive from hashes up the tree
Encrypt the hash to the other child

This one operation does two things:

Encrypt to all but the old
Update the tree with the new

f = H(d)

h = H(f)

a b c d

2nd Try: TreeKEM
Using encryption (vs. DH) enables blank
nodes:

Add and Remove without double join

Constant-time Add

Other benefits vs. ART:

Constant time for receivers (vs. log)

More amenable to post-quantum

f = H(d)

h = H(f)

a b c d

Protocol
Messages

Update
The Tree

Add:
Add leaf to the tree
Group hashes forward
Encrypt secret to new joiner

Remove / Update:
Encrypt fresh entropy to everyone
but the evicted participant

Key Schedule
Init Secret [n-1]

Epoch Secret [n]

App Secret [n]

Confirmation Key [n]

Init Secret [n]

Epoch Secret [n+1]

App Secret [n+1]

Confirmation Key [n+1]

Init Secret [n+1]

Update Secret [n]

Update Secret [n+1]

Tree Updates

Sign + MAC Authentication
struct {
 opaque group_id<0..255>;
 uint32 epoch;
 Credential roster<1..2^32-1>;
 PublicKey tree<1..2^32-1>;
 opaque transcript_hash<0..255>;
} GroupState;

struct {
 uint32 prior_epoch;
 GroupOperation operation;
 uint32 signer_index;
 SignatureScheme algorithm;
 opaque signature<1..2^16-1>;
 opaque confirmation<0..255>;
} Handshake;

MAC over transcript and state using key derived from
updated group state

Signature by key corresponding to roster

Messages that change the state include...

Members of group agree on its state, including...

Identities and public keys of members

The public keys in the tree used for key exchange

The transcript of Handshake messages (as a hash chain)

Analysis

Is It Actually Secure?
MLS tries to stay close to some things that have had security analysis, ART and TLS

ART paper has hybrid modelling: computational analysis of core and symbolic
Tamarin proofs of other parts

Work in Progress: TreeKEM, Authentication, the whole system together

Some challenges:

Complex threat model and security properties

Dynamic groups of arbitrary size

Future
Directions

Trade-Offs

Avoiding
Double-Join

TreeKEM +
Blank nodes

Linear-size state in
clients

Log-size KE
messages

Shared group
state

State corruption by
malicious insiders

Constant-time
Add

“Warm up time”
after creation

Strict message
ordering

Constant-size
app messages

Specification and Implementation
Architecture and specification still in progress,
with several TODOs, e.g.:

Efficiency of the core protocol
Robustness w.r.t. malicious insiders
User-initiated add
Recovery from state loss
ACK / NACK messages

Help wanted:
Reviews of the docs

Suggestions for how to improve them
Security analysis

Several implementations currently in progress:

Melissa (Wire, Rust)
mlspp (Cisco, C++)
MLS* (Inria, F*)
RefMLS (NYU Paris, JS)
REDACTED (Google, C++)

Help wanted:
Other stacks

Pull requests to the above
Suggestions for interop testing

https://github.com/mlswg/mls-architecture
https://github.com/mlswg/mls-protocol
https://github.com/wireapp/melissa
https://github.com/cisco/mlspp

Architecture: https://github.com/mlswg/mls-architecture
https://protocol.messaginglayersecurity.rocks

Protocol: https://github.com/mlswg/mls-protocol
https://architecture.messaginglayersecurity.rocks

Code + Interop: https://github.com/mlswg/mls-implementations

Discussion: mls@ietf.org (archives)

Messaging Layer Security

https://github.com/mlswg/mls-architecture
https://protocol.messaginglayersecurity.rocks/
https://github.com/mlswg/mls-protocol
https://architecture.messaginglayersecurity.rocks
https://github.com/mlswg/mls-implementations
https://www.ietf.org/mailman/listinfo/mls
https://mailarchive.ietf.org/arch/browse/mls/

