
Formal verification for security software in F*
Application to cryptographic protocols and primitives.

Benjamin Beurdouche PhD Defense @ Inria Paris - 2020/12/18

2

Let’s have a look at the security
of TLS implementations!

Internet Standard
1994 Netscape’s Secure Sockets Layer
1995 SSL3
1999 TLS 1.0 (≈SSL3)
2006 TLS 1.1
2008 TLS 1.2
2018 TLS 1.3

TLS Standards & Implementations

Implementations

OpenSSL SChannel NSS SecureTransport mbedTLS JSSE GnuTLS miTLS

Large C/C++ codebase (400K LOC), many forks
Optimized cryptographic code for 50 platforms
Not the best API
Frequent security patches https://openssl.org/news/vulnerabilities.html

https://openssl.org/news/vulnerabilities.html

FlexTLS

deviant traces

We found many many exploitable bugs!
…including FREAK (weak crypto)...

Breaking TLS implementations
Exploiting incorrect state-machines in TLS 1.2 libraries

Test results
for OpenSSL
Each colored
arrow is a bug!

Breaking TLS implementations
Exploiting incorrect state-machines in TLS 1.2 libraries

FlexTLS code for the Early Finished Attack

Breaking TLS implementations
Exploiting incorrect state-machines in TLS 1.2 libraries

An attack against TLS Java Library
(open for 10 years)

Secure implementations of Cryptographic primitives

Improve process for Designing new Cryptographic protocols

Scale to Cryptographic protocols

Thesis goals

HACL*: a library of formally verified
cryptographic primitives

Implementing is hard for everyone

[2014] TweetNaCl

[2014] Curve25519-Donna

Even for very skilled programmers or cryptographers !

[2017] Elliptic curve functional
correctness bug in NSS

What are the properties interesting for us?

Memory Safety
(buffer overflow, out of bounds r/w…)

Functional correctness

(execution time leaks secrets)

(incorrect code logic)

Secret Independence

Formal methods inbound!
Recent academic developments for Cryptography

"Automated Verification of Real-World Cryptographic Implementations",
Aaron Tomb, IEEE Security & Privacy, vol. 14, no. , pp. 26-33, Nov.-Dec. 2016

13

Formal verification: what and how ?

Code generation or Verification of existing code?

Work on ASM, C or High-Level Languages?

CCS 2017 - https://eprint.iacr.org/2017/536 S&P 2020 - https://eprint.iacr.org/2019/757 CCS 2020 - https://eprint.iacr.org/2020/572

https://eprint.iacr.org/2017/536
https://eprint.iacr.org/2019/
https://eprint.iacr.org/2017/536

HACL* verification workflow

Code
(Low*)

Spec
(F*)

Verified Library
(F*/Low*)

Memory safety
Functional correctness

Secret independence
Verify

(F*)

failure
Potential bug

success

Verified Code
(C)

Compile
(KreMLin)

Cannot be compiled to C

Crypto Standard
(RFC, NIST…)

State-of-the-art code
(C)

failure

success

Correctness theorem [ICFP2017]

[POPL 2016]

Deployments

Writing code for the SHA2 shuffle function

One round of SHA-2 compression
internal state of 8 (32/64-bit) words

[Picture from Wikipedia user:Kockmeyer]

This is a stateful function performing in-place modifications of the hash array.

Proving Memory safety in F*

One round of SHA-2 compression
internal state of 8 (32/64-bit) words

[Picture from Wikipedia user:Kockmeyer]

Live and Disjoint predicates are required to hold on inputs
- Live: “the pointer is not null”
- Disjoint: “the objects don’t occupy the same space in memory”

Modifies ensures that hash is the only array modified by this function.

Proving Functional correctness in F*

One round of SHA-2 compression
internal state of 8 (32/64-bit) words

[Picture from Wikipedia user:Kockmeyer]

Some preconditions are required for the values of the ws array.

The postcondition ensures that the output of the efficient stateful function
presented is equal to applying the Specification on the same inputs.

Overall function signature

One round of SHA-2 compression
internal state of 8 (32/64-bit) words

[Picture from Wikipedia user:Kockmeyer]

Everything together…

Proving Secret Independence for Machine Integers

Secret Integers cannot:
• be compared (using =)
• be used for array indexing
• perform non-CT operations

(may depend on platform)

What are the properties interesting for us?

Memory Safety
(buffer overflow, out of bounds r/w…)

Functional correctness

Secret Independence

(incorrect code logic)

(execution time leaks secrets)

22

Low*

HACL* - High Assurance Crypto Library

Functionalities
• Hash functions
• Message authentication codes
• Encryption schemes
• Elliptic curve algorithms
• Signature schemes

• High Level APIs

Formal verification can scale up !

Is this ready for production?

24

Improving code quality for Production

Better variable naming
Removing intermediate variables

Write F*
spec & code

Verified Code
(C)

Extract to C
and Test

success

success

failure

Format
and Audit

success
failure

CI Verification
and Tests

success

failure

Production

Prove
Low* code

success

failure

Production
workflow

Formally verified protocol software

26

Signal protocol

27

Signal Protocol is a pairwise secure channel
used in many messaging applications.

Provides strong security guarantees in the
2-party setting, including:
• Forward Secrecy (FS)
• Post Compromise Security (PCS)

Significant scientific literature and analysis
• Both symbolic and computational models
• Both mechanized and manual proofs

WhatsApp

28

Signal Protocol
Initiator I Responder R

Prior Knowledge:
(i, gi)

Prior Knowledge:
(r, gr), (s, gs)[, (o, go)]

Initiate(i, gr, gs[, go]) ! (rk0):
generate (e, ge)

dh0 = 0xFF | gsi | gre | gse[| goe]
rk0 = HKDF(dh0, 0x0032, “WhisperText00)

SendRatchet(rk0, gs) ! (rk1, cki0, x0):
generate (x0, gx0)

rk1 | cki0 = HKDF(gsx0 , rk0, “WhisperRatchet00)

Encrypt(gi, gr, gx0 , cki0,m0) ! (cki1, c0, t0):
cki1 = HMAC(cki0, 0x01)
k0 = HMAC(cki0, 0x00)

(ek0, iv0,mk0) = HKDF(k0, 0x0032, “WhisperMessageKeys00)
c0 = FORMAT(gx0 , 0, 0,AES-CBC(ek0, iv0,m0))

t0 = HMAC(mk0, gr | gi | 0x33 | c0)

MSG0(gi, ge, c0, t0)

Respond(r, s, o, gi, ge) ! (rk0):
recompute dh0, rk0 (similarly to I)

ReceiveRatchet(rk0, s, gx0) ! (rk1, cki0):
recompute rk1, cki0 (similarly to I)

Decrypt(cki0, c0, t0) ! (m0, cki1):
recompute cki1, k0 (similarly to I)

verify MAC and decrypt (c0, t0) to get m0

SendRatchet(rk1, gx0) ! (rk2, ckr0, y0)

Encrypt(gr, gi, gy0 , ckr0,m1) ! (ckr1, c1, t1)
MSG(c1, t1)

ReceiveRatchet(rk1, x0, gy0) ! (rk2, ckr0)

Decrypt(ckr0, c1, t1) ! (m1, ckr1)

Session State:
{root key : rk2, send chain : (cki1, x0), recv chain : (ckr1, g

y0)}
Session State:

{root key : rk2, send chain : (ckr1, y0), recv chain : (cki1, g
x0)}

· · ·

X3DH

29

Signal Protocol
Initiator I Responder R

Session State:
{root key : rk2, send chain : (cki1, x0), recv chain : (ckr1, g

y0)}
Session State:

{root key : rk2, send chain : (ckr1, y0), recv chain : (cki1, g
x0)}

SendRatchet(rk2, gy0) ! (rk3, cki2, x1)

Encrypt(gi, gr, gx1 , cki2,m2) ! (cki3, c2, t2)
MSG(c2, t2)

ReceiveRatchet(rk2, y0, gx1) ! (rk3, cki2)

Decrypt(cki2, c2, t2) ! (m2, cki3)Encrypt(gi, gr, gx1 , cki3,m3) ! (cki4, c3, t3)
MSG(c3, t3)

Decrypt(cki3, c3, t3) ! (m3, cki4)Encrypt(gi, gr, gx1 , cki4,m4) ! (cki5, c4, t4)
MSG(c4, t4)

Decrypt(cki4, c4, t4) ! (m4, cki5)

Session State:
{root key : rk3, send chain : (cki5, x1), recv chain : (ckr1, g

y0)}
Session State:

{root key : rk3, send chain : (ckr1, y0), recv chain : (cki5, g
x1)}

SendRatchet(rk3, gx1) ! (rk4, ckr2, y1)

Encrypt(gr, gi, gy1 , ckr2,m5) ! (ckr3, c5, t5)
MSG(c5, t5)

ReceiveRatchet(rk3, x1, gy1) ! (rk4, ckr2)

Decrypt(ckr2, c5, t5) ! (m5, ckr3) Encrypt(gr, gi, gy1 , ckr3,m6) ! (ckr4, c6, t6)
MSG(c6, t6)

Decrypt(ckr3, c6, t6) ! (m6, ckr4)

Session State:
{root key : rk4, send chain : (cki5, x1), recv chain : (ckr4, g

y2)}
Session State:

{root key : rk4, send chain : (ckr4, y2), recv chain : (cki5, g
x1)}

· · ·

Double
Ratchet

30

Specifying Signal in F*

X3DH
(initiate)

31

A verified interoperable implementation of Signal

Designing and verifying MLS

32

Messaging Layer Security

33

A new secure group messaging protocol at the IETF

34

Architecture of a Secure Messaging System

Authentication Service Delivery Service

x y a b c d e z

[m]g
[m]g

Group G of members a, b, c, d, e

The Authentication Service (AS) is often trusted (not necessarily).
The Delivery Service (DS) is untrusted.

Group Key Agreements

35

Chained
mKEM

G

0 1 2 3 4 5 6 7

Group State enc(si, [eka, ekb, ekc, ekd, eke])

(max size = 8)eka ekb ekc ekd eke

si

KDF KiKi�1...K1K0

Group Secret

Messaging Key

Protocol Transcriptopiopi�1...op1GS0 | | | |

O(N) Public Key operations for the sender on Creation, Update and Remove
O(1) Public Key operations for the sender on Add
O(1) Public Key operations for the receiver

O(1) AEAD Encryption/Decryption for messages

O(N) Storage

36

TreeKEM

TreeKEM: Tree-based Group Key Agreement for MLS

O(N) Public Key operations for the sender on Creation
O(log N) Public Key operations for the receiver of Create
O(log N) Public Key operations for the sender on Add, Update and Remove
O(1) Public Key operations for the receiver

37

Update

G

03

01

0 1

23

2 3

47

45

4 5

67

6 7

eka ekb ekc ekd eke

e01

e03

e23 e45

e47

e07

si

KDF KiKi�1...K1K0

opiopi�1...op1GS0 | | | |

G

03

01

0 1

23

2 3

47

45

4 5

67

6 7

eka0 ekb ekc ekd eke

e01

e03

e23 e45

e47

e07

si+1

KDF Ki+1Ki

Member a updates its leaf KEM key

Group Secret

Messaging Key

Protocol Transcriptopi+1opiopi�1...op1GS0 | | | | |

TreeKEM: Tree-based Group Key Agreement for MLS

Member A updates its public key encryption keypair, derives new intermediate values and
encrypts them for the sibling subgroup.

O(logN) public key encryptions for the sender. O(1) decryptions for the receiver.

38

TreeKEM

The Double Join problem in TreeKEM

07

03

01

0 1

23

2 3

47

45

4 5

67

6 7

eka ekb ekc ekd eke

07

03

01

0 1

23

2 3

47

45

4 5

67

6 7

eka ekb ekc ekd

07

03

01

0 1

23

2 3

47

45

4 5

67

6 7

ekb ekc ekd

Malicious insider a
removes e c removes a

Because A provides secrets for nodes 45 and 47 to their subgroups
it might still know these after being removed

The sender removes the leaf and provides new keys for all the subgroups the removed node belonged to.

...

MLS Evolution

2018 2019 2021
RFC Standard complete?

ART

TreeKEM

TreeKEM with Signatures and…

New Double Join
attack

TreeKEM with
Blanking

2020

40

Low*

Challenges of formalizing MLS

Succinct formal specification.
An IETF document is quite informal...

Build an executable model for group messaging.
Testing multi-party protocols like MLS is difficult!

Prove security for arbitrary size groups.
Analyzing recursive data-structures like trees require induction
Handling an unbounded number of group participants is hard for automated tools

F* is the only framework that can handle all these aspects!

Formalizing
Group Messaging in F*

41

Types and functions for
1. group states: trees
2. group operations: add, remove, update
3. group secrets: TreeKEM computations

Formalizing
Group Messaging in F*

42

Types and functions for
1. messages
2. encryption
3. decryption

High-level spec. is 300 lines of F*
Symbolically executable

43

Low*

Ongoing work for security analysis

Perspective as one of the designers of MLS

Ensure that the protocol can be studied and
modelled using current formal analysis
techniques.

Update the protocol to include feedback
from research teams.

…

44

Low*

Ongoing work for security analysis
Perspective from the researcher side

We have written executable formal specification for an early
draft (-06) and did a symbolic security analysis.

It is missing new elements and we are in the process of
updating the specification and proofs.

Our goal is to have a full proof to publish alongside the RFC.

Finally we want to have a verified implementation.

Conclusions

45

46

Low*

Contributed to a real-world verified cryptographic library
created libraries, wrote verified primitives, developed a
new workflow to include code in multiple products.

Conclusions

Designed a new group messaging protocol
Co-authored RFCs for MLS by using formal verification to
guide a principled approach.

Analysed and implemented real world protocols
Found attacks on TLS 1.2 and helped build a verified
interoperable implementation of Signal.

47

Low*

Towards more complex cryptographic primitives
PQ primitives, zero-knowledge proofs would certainly
benefit from verified implementations

Looking forward

Improving the verification toolchain
reducing the trusted code base, reducing proof effort…

Bridging the gap between formally verified
implementations and cryptographic proofs
Link proofs from tools like CryptoVerif with F*
implementations

Thank you !

48

